EQUILIBRIUM ELECTROCHEMISTRY

NANIK DWI NURHAYATI, S.SI,M.SI

- http://nanikdn.staff.uns.ac.id
- E-mail : nanikdn@uns.ac.id

Electrochemical Cells

- Electrochemical cell - two electrodes in contact with an electrolyte
- Electrolyte is an ionic conductor (solution, liquid, or solid)
- Electrode compartment = electrode + electrolyte
- If electrolytes are different compartments may be connect with salt bridge
- Electrolyte solution in agar
- Galvanic cell - an electrochemical cell that produces electricity
- Electrolytic cell - an electrochemical cell in which a non-spontaneous reaction is driven by an external source of current

Types of Electrodes

`1. Metal/metal ion

- Designation: $\mathrm{M}(\mathrm{s}) \mid \mathrm{M}^{+}(\mathrm{aq})$
- Redox couple: $\mathrm{M}^{+} / \mathrm{M}$
- Half reaction: $\mathrm{M}^{+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow \mathrm{M}(\mathrm{s})$

2. Hidrogen (SHE)

- Designation*:

$$
\operatorname{Pt}(\mathrm{s})\left|\mathrm{X}_{2}(\mathrm{~g})\right| \mathrm{X}^{+}(\mathrm{aq}) \text { or } \operatorname{Pt}(\mathrm{s})\left|\mathrm{X}_{2}(\mathrm{~g})\right| \mathrm{X}^{-}(\mathrm{aq})
$$

- Redox couple:

$$
X^{+} / X_{2} \text { or } X_{2} / X^{-}
$$

- Half reaction:

$$
\mathrm{X}^{+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow 1 / 2 \mathrm{X}_{2}(\mathrm{~g}) \text { or } 1 / 2 \mathrm{X}_{2}(\mathrm{~g})+1 \mathrm{e}^{-} \rightarrow \mathrm{X}^{-}(\mathrm{aq})
$$

3. Metal/insoluble salt

- Designation:M(s)|MX(s)|X-(aq)
- Redox couple: MX /M, X^{-}
- Half reaction: $M X(s)+1 e^{-} \rightarrow M(s)+X^{-}(a q)$

4. Redoxs

- Designation*: $\operatorname{Pt}(\mathrm{s}) \mid \mathrm{M}^{+}(\mathrm{aq}), \mathrm{M}^{2+}(\mathrm{aq})$
- Redox couple: $\mathrm{M}^{+} / \mathrm{M}^{2+}$
- Half reaction: $\mathrm{M}^{2+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow \mathrm{M}^{+}(\mathrm{aq})$

Electrochemical cells

- Liquid junction potential: due to the difference in the concentrations of electrolytes.

Standard Potentials

- Since you can't measure the potential of a single electrode, one pair has been assigned, by convention a potential of 0
- Standard hydrogen electrode (SHE):

$$
\operatorname{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{E}^{\varnothing}=0
$$

$>$ Other potentials determined by constructing cells in which SHE is left hand electrode:
» Silver Chloride|Silver

$$
\begin{gathered}
\mathrm{Pt}(\mathrm{~s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})| | \mathrm{Cl}^{-}(\mathrm{aq})|\mathrm{AgCl}(\mathrm{~s})| \mathrm{Ag} \quad \mathrm{E}^{\phi}\left(\mathrm{AgCl}, \mathrm{Ag}, \mathrm{Cl}^{-}\right)=+0.22 \mathrm{~V} \\
\text { Reaction: } \mathrm{AgCl}(\mathrm{~s})+1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ag}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{gathered}
$$

A Because all potentials are relative to the hydrogen electrode, the reaction is listed without the contribution of the SHE,

$$
\operatorname{AgCl}(\mathrm{s}) \rightarrow \mathrm{Ag}(\mathbf{s})+\mathrm{Cl}^{-}(\mathbf{a q})
$$

Standard Reduction Potentials

Potential (V)
Reduction Half-Reaction
$+2.87$
$+1.51$
$+1.36$
$+1.33$
$+1.23$
$+1.06$
$+0.96$
$+0.80$
$+0.77$
$+0.68$
$+0.59$
$+0.54$
$+0.40$
$+0.34$
0 [defined]
-0.28
-0.44
-0.76
-0.83
-1.66
-2.71
-3.05

$$
\begin{aligned}
& \mathrm{F}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(a q) \\
& \mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(a q) \\
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{Br}_{2}(l)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(a q) \\
& \mathrm{NO}_{3}^{-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(s) \\
& \mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q) \\
& \mathrm{O}_{2}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q) \\
& \mathrm{MnO}_{4}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}(s)+4 \mathrm{OH}^{-}(a q) \\
& \mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}(a q) \\
& \mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q) \\
& \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s) \\
& 2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}(g) \\
& \mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(s) \\
& \mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s) \\
& \mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(s) \\
& 2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}(g)+2 \mathrm{OH}^{-}(a q) \\
& \mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(s) \\
& \mathrm{Na}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(s) \\
& \mathrm{Li}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Li}(s)
\end{aligned}
$$

Reduction potentials for many electrodes have been measured and tabulated.

Voltaic Cells

- We can use that energy to do work if we make the electrons flow through an external device.
- We call such a setup a voltaic cell.

Voltaic Cells

Cell Potential and Free Energy

ΔG for a redox reaction can be found by using the equation

$$
\begin{aligned}
\Delta G & =-n F E \\
\Delta G^{\circ} & =-n F E^{\circ}
\end{aligned}
$$

where n is the number of moles of electrons transferred, and F is a constant, the Faraday.
$1 F=96,485 \mathrm{C} / \mathrm{mol}=96,485 \mathrm{~J} / \mathrm{V}-\mathrm{mol}$

Nernst Equation

Dividing both sides by $-n F$, we get the Nernst equation:

$$
E=E^{\circ}-\frac{R T}{n F} \ln Q
$$

or, using base-10 logarithms,

$$
E=E^{\circ}-\frac{2.303 R T}{n F} \ln Q
$$

Nernst Equation

At room temperature (298 K),

$$
\frac{2.303 R T}{F}=0.0592 \mathrm{~V}
$$

Thus the equation becomes

$$
\begin{aligned}
& E=E^{\circ}-\frac{0.0592}{n} \ln Q \\
& E_{\text {sel }}=E^{\circ}{ }_{\text {sel }}-\frac{0,059}{n} \log \frac{(C) c}{(A) a}(\mathrm{D}) \mathrm{d} \\
& \text { (B)b }
\end{aligned}
$$

Reaction Equilibrium

$$
\begin{aligned}
& \Delta \mathrm{G}=0, \mathrm{E}=0 \\
& \mathrm{aA}+\mathrm{bB} \Longleftrightarrow \mathrm{cC}+\mathrm{dD} \\
& \mathrm{~K}=\frac{(\mathrm{C})^{\mathrm{c}}(\mathrm{D})^{\mathrm{d}}}{(\mathrm{~A})^{\mathrm{a}}(\mathrm{~B})^{\mathrm{b}}} \rightleftarrows \\
& \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{5(\mathrm{~g})}
\end{aligned} \frac{P C L_{5}}{\left(P C L_{3}\right)\left(C l_{2}\right)}=K_{C} .
$$

$$
\begin{gathered}
E_{\text {sel }}=E_{\text {sel }}^{o}-\frac{R T}{n F} \ln K \\
E_{\text {sel }}^{o}=\frac{R T}{n F} \ln K
\end{gathered}
$$

$$
K=\frac{\left[a_{\text {oksidasi }}\right]}{\left[a_{\text {reduksi }}\right]}
$$

$$
K=e^{\frac{n F E_{s e l}^{o}}{R T}}
$$

$E_{\text {sel }}=E_{\text {sel }}^{o}-\frac{0,059}{n} \frac{\log (C)^{c}(D)^{d}}{(A)^{a}(B)^{b}}$
$\mathrm{E}_{\text {sel }}^{0}=\underline{0,059} \operatorname{Log~K}$
n

- At equilibrium, $\Delta \mathrm{G}_{\mathrm{rxn}}=0$

$$
\begin{gathered}
\Delta G_{r x n}^{\prime}=\Delta G_{r x n}^{o}+R T \ln (Q) \\
0=\Delta \mathrm{G}_{\mathrm{rxn}}^{\circ}+\mathrm{RT} \ln (\mathrm{~K}) \\
\Delta \mathrm{G}_{\mathrm{rxn}}^{\circ}=-\mathrm{R} \operatorname{Tn}(\mathrm{~K})
\end{gathered}
$$

Concentration Cells

- Notice that the Nernst equation implies that a cell could be created that has the same substance at both electrodes.

Temperature Dependence of K

- We now have two definitions for $\Delta \mathrm{G}^{\circ}$

$$
\Delta G^{\circ}{ }_{\text {rxn }}=-R T \ln (K)=\Delta H^{\circ}-T \Delta S^{\circ}
$$

- Rearranging (dividing by -RT)

$$
\begin{aligned}
\ln (K) & =\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T}\right)+\frac{\Delta S^{\circ}}{R} \\
\mathrm{y} & =\mathrm{m} \mathrm{x}+\mathrm{b}
\end{aligned}
$$

- Plot of $\ln (\mathrm{K})$ vs $1 / \mathrm{T}$ is a straight line

T Dependence of K (cont.)

- we know the T dependence of K, we can predict K at another temperature:

$$
\begin{gathered}
\ln \left(K_{2}\right)=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}\right)+\frac{\Delta S^{\circ}}{R}-\ln \left(K_{1}\right)=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T_{1}}\right)+\frac{\Delta S^{\circ}}{R} \\
\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
\end{gathered}
$$

the van't Hoff equation.

Applications of Oxidation-Reduction Reactions Batteries

Alkaline Batteries

Determine pH

- Again concentration is replaced with activity

$$
\mathrm{pH}=-\log \mathrm{A}_{\mathrm{H}^{+}}=-\log \left[\mathrm{H}^{+}\right] \gamma_{\mathrm{H}^{+}}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}_{+}\right]$.
$\mathrm{pH}=-\log \mathrm{aH}+$
Pt $\left|\mathrm{H}_{2(\mathrm{~g})}\right| \mathrm{H}^{+}{ }_{\left(\mathrm{H}_{+}\right)}| | \mathrm{H}^{+}{ }_{\text {(std) }} \mid \mathrm{H}_{2(\mathrm{~g})}$

$$
\mathrm{H}^{+}+\mathrm{e}-=1 / 2 \mathrm{H}_{2(\mathrm{~g})} \quad \mathrm{E}^{0}=0,0000 \mathrm{~V}
$$

$\mathrm{E}_{\text {sel }}=\mathrm{E}_{\text {sel }}^{\circ}-0,0591 \log \frac{[\text { oksidasi }]}{[\text { reduksi }]}$
$\mathrm{E}_{\text {sel }}=-0,059 \log \left(\mathrm{H}^{+}\right)$
$\left(\mathrm{H}^{+}\right)_{\text {std }}$

pH and pKa

$$
\mathrm{H}^{+}(\mathrm{aq})+1 \mathrm{e}^{-} \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Q}=\frac{\left(f_{\mathrm{H}_{2}} / \mathrm{p}^{\varnothing}\right)^{0.5}}{\mathrm{a}_{\mathrm{H}^{+}}}
$$

- For hydrogen electrode ($1 / 2$ reaction above), $\mathrm{E}^{\phi}=0$
- If $f_{H 2}=p^{\phi}, Q=1 / a_{H+}$ and $E=(R T / F) \ln \left(a_{H+}\right)$
- $E=E^{\varnothing}-(R T / n F) \ln Q$
- Converting In to $\log (\ln =2.303 \log), \mathrm{E}=(\mathrm{RT} / \mathrm{F}) 2.303 \log \left(\mathrm{a}_{\mathrm{H}+}\right)$
- Define $\mathrm{pH}=-\operatorname{loga}_{\mathrm{H}}$ so $\mathrm{E}=-2.303(\mathrm{RT} / \mathrm{F}) \mathrm{pH}$
- At $25^{\circ} \mathrm{C}, \mathrm{E}=-59.16 \mathrm{mVpH}$
- Measurement
- Direct method: hydrogen electrode + saturated calomel reference electrode $\left(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)$
- At $25^{\circ} \mathrm{C}, \mathrm{pH}=(\mathrm{E}+\mathrm{E}($ calomel $)) /(-59.16 \mathrm{mV})$
- Indirect method:
- Replace hydrogen electrode with glass electrode sensitive to hydrogen activity (but not permeable to H^{+}
- E (glass) $\alpha \mathrm{pH}, \mathrm{E}$ (glass) $=0$ when $\mathrm{pH}=7$
pKa
- Since we learned $\mathrm{pH}=\mathrm{pKa}$ when concentration of acid and conjugate base are equal pKa can be measured directly from pH measurement
- Ion-Selective electrodes - related to glass electrode except potentials sensitive to other species (see Box 10.2, p 278)
$\mathrm{Pb}(\mathrm{s}) \mid \mathrm{Pb}^{2+}\left(\right.$ jenuh, $\left.\mathrm{PbCl}_{2}\right)| | \mathrm{Pb}^{2+}(0.05 \mathrm{M}) \mid \mathrm{Pb}(\mathrm{s})$
Esel $=0.015$ volt

```
oxsidation : Pb(s) -> Pb}\mp@subsup{}{}{2+}(jenuh, \mp@subsup{\textrm{PbCl}}{2}{})+2e\mp@subsup{\textrm{E}}{}{\circ}\mathrm{ sel = 0,13 V
Reduction: }\mp@subsup{\textrm{Pb}}{}{2+}+2\textrm{e}->\textrm{Pb}(\textrm{s}
    E`sel = - 0,13 V
```

Esel $=\mathrm{E}^{\circ}$ sel $-\log \left(\mathrm{Pb}^{2+}\left(\right.\right.$ jenuh, $\left.\left.\mathrm{PbCl}_{2}\right)\right)$
$\left(\mathrm{Pb}^{2+}\right)$
$0.015=0-0.0296(\log a-\log 0.05)$
$\mathrm{a}=\left[\mathrm{Pb}^{2+}\right]=1.6 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=2\left[\mathrm{~Pb}^{2+}\right]=3.2 \times 10^{-2} \mathrm{M}$
$\mathrm{K} s \mathrm{p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
$=\left[1.6 \times 10^{-2}\right]\left[3.2 \times 10^{-2}\right]^{2}$
$=1.6 \times 10^{-5}$

THANK YOU

